
Problematic Solution Architecture Conclusion

An object memory management solution for
small devices with heterogeneous memories

Kevin Marquet, Gilles Grimaud

IRCICA/LIFL, CNRS UMR 8022, INRIA Futurs, POPS Research Group

Madrid, June 2007

ifL

1 / 21

Problematic Solution Architecture Conclusion

Outline

Problematic

Solution

Architecture

Conclusion

2 / 21

Problematic Solution Architecture Conclusion

Small devices

Tiny devices (sensors, smart cards):

• Small amount of memory,

• Different kinds of memory: ROM, RAM, EEPROM, Flash;

• Different properties (security, efficiency, cost);

• Different proportions;

• Depends on the device.

Typically:
Few KBytes of RAM (Internal and External RAM)
Dozens of KBytes of EEPROM,
Hundreds of KBytes of ROM.

3 / 21

Problematic Solution Architecture Conclusion

System: (Java) virtual machine

Hardware (CPU, RAM, ROM, serial line, etc.)

OMem Tasks

Bytecodes interpreter
Natives

(Java) Runtime (java.lang, java.net, ...)

Applications

K
er

ne
l

E
xt

en
si

on

N
ative

(Java)

O
S

4 / 21

Problematic Solution Architecture Conclusion

System: (Java) virtual machine

Hardware (CPU, RAM, ROM, serial line, etc.)

OMem Tasks

Bytecodes interpreter
Natives

(Java) Runtime (java.lang, java.net, ...)

Applications

K
er

ne
l

E
xt

en
si

on

N
ative

(Java)

O
S

OMem

4 / 21

Problematic Solution Architecture Conclusion

Memory management

Goal: Automatic data reclamation (garbage collection).

Which garbage collection algorithm ?

Garbage collectors have different properties:

• execution speed;

• memory consumption;

• latency;

• ...

5 / 21

Problematic Solution Architecture Conclusion

Example: performances

Reading cost
0 5 10 15 20

Writing
cost

0

20

40

60

80

100

M&S

Compact

Copy

Reading cost
0 5 10 15 20

Writing
cost

0

20

40

60

80

100

M&S

Compact 2

Copy

6 / 21

Problematic Solution Architecture Conclusion

Objectives

Objectives:

• design a memory management architecture...

• ...flexible (regarding to applications and hardware
configuration)...

• ...allowing automatic data reclamation...

• of several memories with different properties

7 / 21

Problematic Solution Architecture Conclusion

Existing works

Actually: memory manager dedicated to the uderlying
hardware (Java Card...)

• Not portable;

• Not flexible;

• Suboptimal.

Memory Manager

Mem. 1 Mem. 2 Mem. 3

8 / 21

Problematic Solution Architecture Conclusion

Outline

Problematic

Solution

Architecture

Conclusion

9 / 21

Problematic Solution Architecture Conclusion

Our approach

Our approach: Assign one specific manager to each memory
space

Memory
manager

1

Memory
manager

2

Memory
manager

3

Mem. 1 Mem. 2 Mem. 3

Problems:

• Marking live objects;

• Moving management;

• Reference management (update);

• Interactions between managers.

→ Make managers to cooperate.

10 / 21

Problematic Solution Architecture Conclusion

Solution

All types of collectors can be inserted in a special framework:

• Prepare;

• Modify references; [All memory spaces]

• Collect;

• Update references. [All memory spaces]

Marking: special distributed algorithm (not detailed here)

11 / 21

Problematic Solution Architecture Conclusion

Solution

All types of collectors can be inserted in a special framework:

• Prepare;

• Modify references; [All memory spaces]

• Collect;

• Update references. [All memory spaces]

Marking: special distributed algorithm (not detailed here)

11 / 21

Problematic Solution Architecture Conclusion

Solution

All types of collectors can be inserted in a special framework:

• Prepare;

• Modify references; [All memory spaces]

• Collect;

• Update references. [All memory spaces]

Marking: special distributed algorithm (not detailed here)

11 / 21

Problematic Solution Architecture Conclusion

Different algorithms

Semi-space:

Mark: Traces all live objects. Each live object encoun-
tered is moved to the unused semi-space and
its new address is stored at its old location.
Only live objects are copied, thus performing
the collection implicitly.

Update: Scans the other semi-space and update each
reference with the new location of the pointed
object.

12 / 21

Problematic Solution Architecture Conclusion

Different algorithms

Mark and compact:

Mark: traverses all live objects and mark them as
such.

Prepare: scans memory, compute the new location of ob-
jects so that they are sequential from the bot-
tom of the heap. The new address is stored
into an extra word of the object.

Modify: scans the memory and replace all references
towards objects with the new location of this ob-
ject.

Collect: moves each live object to its new location. As
for semi-space collectors, only live objects are
moved, thereby collecting others implicitly.

12 / 21

Problematic Solution Architecture Conclusion

Different algorithms
Mark and compact with dereferencing table:

Mark: Traverses all live objects and mark them as such.

Prepare: Scan memory and store each address of live objects into a refer-
ences table (address increasingly ordered).
Version 1: each entry of the table contains one word.
Version 2: each entry of the table contains two words. The ad-
dress is stored in the first word.

Modify: (Version 1), dereferences all references in memory towards the
table (search by dichotomy).

Collect: move each live object to its new location.
Version 1: this new location erases the old location in the table.
Version 2: it is stored in the second word of the entry of the table.

Update: updates each reference to point to the new location.
version 1: this new location is the one pointed by the reference in
the table.
version 2, it is found in the second word of the entry.

12 / 21

Problematic Solution Architecture Conclusion

Different algorithms

Mark and sweep:

Mark: traverses all live objects and marks them as
such.

Collect: scans the memory to reclaim all unused ob-
jects.

12 / 21

Problematic Solution Architecture Conclusion

Different algorithms

2-generational copying (Sun’s HotSpot):

Mark: traces all live objects of the nursery and marks
them as such;

Collect: copies all live objects of the nursery in the bot-
tom of the heap;

Update: updates all references to match the new loca-
tion of objects previously located in the nursery.

12 / 21

Problematic Solution Architecture Conclusion

Outline

Problematic

Solution

Architecture

Conclusion

13 / 21

Problematic Solution Architecture Conclusion

Architecture

Monitor

Memory
manager

1

Memory
manager

2

Memory
manager

3

eeprom ram flash

apis

allocations collection

collection:
prepare(),
collect(),

etc.

allocations marking

Refs
update

Refs
update

14 / 21

Problematic Solution Architecture Conclusion

Implementation

• Configuration files;

• Generation of C structures, compiled with the source.

struct heap variables s {
const unsigned int id;
unsigned char* heapBase;
const unsigned int memsize;
void (*prepare) (void);
void (*modify) (struct heap variables s *);
void (*collect) (void);
void (*update) (struct heap variables s *);
struct java lang Object*

(*getUpdatedAddress) (struct java lang Object *aref);
struct java lang Object*

(*getModifiedAddress) (struct java lang Object *aref);
struct modifiable heap variables s *modifiable variables;

};

struct modifiable heap variables s {
unsigned char* toh;
unsigned int nbObjects;

};

15 / 21

Problematic Solution Architecture Conclusion

Example (semi-space)

marking

Monitor mm1 mm2 mm3

co
lle

ct
up

da
te

gc(mm1)

mm1.collect()
moveObject

mm1.update()

mm2.update()

getNewReference(...)

mm3.update()

getNewReference(...)

16 / 21

Problematic Solution Architecture Conclusion

Few results

Code size:

• tools: 8.5 kilobytes of compiled code;

• each manager: from 1 to 2.5 kilobytes of compiled code;

Data:

• Few bytes per manager (C structure)

17 / 21

Problematic Solution Architecture Conclusion

Outline

Problematic

Solution

Architecture

Conclusion

18 / 21

Problematic Solution Architecture Conclusion

Conclusion

• Architecture able to manage several memories;

• One memory manager per partition;

• Acceptable performances;

• Flexibility: Guillaume Salagnac (VERIMAG institute)
inserted easily its own dedicated manager in the
framework.

19 / 21

Problematic Solution Architecture Conclusion

Perspectives

Work in progress:

• Optimizations (reference management);

• Implementations of new collectors.

Future work:

• Set up a gc algorithm for low access times memories;

• Dynamic modification of the memory management

20 / 21

Questions?

Thank you for your attention...

Questions?

21 / 21

	Problematic
	Solution
	Architecture
	Conclusion
	Appendix
	Questions?

