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Small devices

Tiny devices (sensors, smart cards):

• Small amount of memory,

• Different kinds of memory: ROM, RAM, EEPROM, Flash;

• Different properties (security, efficiency, cost);

• Different proportions;

• Depends on the device.

Typically:
Few KBytes of RAM (Internal and External RAM)
Dozens of KBytes of EEPROM,
Hundreds of KBytes of ROM.
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System: (Java) virtual machine
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Memory management

Goal: Automatic data reclamation (garbage collection).

Which garbage collection algorithm ?

Garbage collectors have different properties:

• execution speed;

• memory consumption;

• latency;

• ...
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Example: performances
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Objectives

Objectives:

• design a memory management architecture...

• ...flexible (regarding to applications and hardware
configuration)...

• ...allowing automatic data reclamation...

• of several memories with different properties
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Existing works

Actually: memory manager dedicated to the uderlying
hardware (Java Card...)

• Not portable;

• Not flexible;

• Suboptimal.

Memory Manager

Mem. 1 Mem. 2 Mem. 3
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Our approach

Our approach: Assign one specific manager to each memory
space

Memory
manager

1

Memory
manager
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Memory
manager

3
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Problems:

• Marking live objects;

• Moving management;

• Reference management (update);

• Interactions between managers.

→ Make managers to cooperate.
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Solution

All types of collectors can be inserted in a special framework:

• Prepare;

• Modify references; [All memory spaces]

• Collect;

• Update references. [All memory spaces]

Marking: special distributed algorithm (not detailed here)
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Different algorithms

Semi-space:

Mark: Traces all live objects. Each live object encoun-
tered is moved to the unused semi-space and
its new address is stored at its old location.
Only live objects are copied, thus performing
the collection implicitly.

Update: Scans the other semi-space and update each
reference with the new location of the pointed
object.
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Different algorithms

Mark and compact:

Mark: traverses all live objects and mark them as
such.

Prepare: scans memory, compute the new location of ob-
jects so that they are sequential from the bot-
tom of the heap. The new address is stored
into an extra word of the object.

Modify: scans the memory and replace all references
towards objects with the new location of this ob-
ject.

Collect: moves each live object to its new location. As
for semi-space collectors, only live objects are
moved, thereby collecting others implicitly.
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Different algorithms
Mark and compact with dereferencing table:

Mark: Traverses all live objects and mark them as such.

Prepare: Scan memory and store each address of live objects into a refer-
ences table (address increasingly ordered).
Version 1: each entry of the table contains one word.
Version 2: each entry of the table contains two words. The ad-
dress is stored in the first word.

Modify: (Version 1), dereferences all references in memory towards the
table (search by dichotomy).

Collect: move each live object to its new location.
Version 1: this new location erases the old location in the table.
Version 2: it is stored in the second word of the entry of the table.

Update: updates each reference to point to the new location.
version 1: this new location is the one pointed by the reference in
the table.
version 2, it is found in the second word of the entry.
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Different algorithms

Mark and sweep:

Mark: traverses all live objects and marks them as
such.

Collect: scans the memory to reclaim all unused ob-
jects.
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Different algorithms

2-generational copying (Sun’s HotSpot):

Mark: traces all live objects of the nursery and marks
them as such;

Collect: copies all live objects of the nursery in the bot-
tom of the heap;

Update: updates all references to match the new loca-
tion of objects previously located in the nursery.
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Architecture
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Implementation

• Configuration files;

• Generation of C structures, compiled with the source.

struct heap variables s {
const unsigned int id;
unsigned char* heapBase;
const unsigned int memsize;
void (*prepare) ( void );
void (*modify) (struct heap variables s *);
void (*collect) ( void );
void (*update) (struct heap variables s *);
struct java lang Object*

(*getUpdatedAddress) (struct java lang Object *aref);
struct java lang Object*

(*getModifiedAddress) (struct java lang Object *aref);
struct modifiable heap variables s *modifiable variables;

};

struct modifiable heap variables s {
unsigned char* toh;
unsigned int nbObjects;

};
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Example (semi-space)
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Few results

Code size:

• tools: 8.5 kilobytes of compiled code;

• each manager: from 1 to 2.5 kilobytes of compiled code;

Data:

• Few bytes per manager (C structure)
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Conclusion

• Architecture able to manage several memories;

• One memory manager per partition;

• Acceptable performances;

• Flexibility: Guillaume Salagnac (VERIMAG institute)
inserted easily its own dedicated manager in the
framework.
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Perspectives

Work in progress:

• Optimizations (reference management);

• Implementations of new collectors.

Future work:

• Set up a gc algorithm for low access times memories;

• Dynamic modification of the memory management
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Questions?

Thank you for your attention...

Questions?
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